skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sultana, Arifa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Localization is a key ability for robot navigation and collision avoidance. The advent of technologies such as GPS have led to many improvements in terrestrial navigation. Unfortunately traditional electromagnetic (EM) communications propagate poorly through lossy media such as underwater and underground. Therefore, localization remains a challenging problem in such environments, necessitating other approaches such as acoustics and magnetic induction (MI). This paper investigates estimating the relative location of a pair of MI triaxial coil antennas in air, as a preliminary step to underwater applications. By measuring the voltages induced in the receiving antenna when the transmitting antenna's coils are turned on sequentially, the distance between the antennas can be computed. Then, with knowledge of the current velocities of the antennas, we can apply a particle filter to generate an estimate of the location of the transmitting antenna with respect to the receiving one. The theory is supported by simulations and later verified through a series of experiments. 
    more » « less